Homogenous system "Ax = 0"
1) trivial solution : x = 0
-> Span {0}
2) nontrivial solution : equation has at least one free variable (=해가 무한대)
-> Ax = 0 은 항상 Span {v1, ..., vp} 로 표현될 수 있다.
Nonhomogenouse system "Ax = b"
- 정리 6
Ax = b is consistent and let p be a solution
Then the solution set of Ax = b is the set of all vectors of the form w = p + vh
where vh is any solution of the homogeneous equation Ax = 0
[증명]

'통계 > 선형대수 (Linear Algebra)' 카테고리의 다른 글
Linear Independence (0) | 2024.06.09 |
---|---|
Vector equations & Scalar (0) | 2024.06.08 |
Solution of linear system : general solution with free variables (0) | 2024.06.08 |
Echelon Forms (0) | 2024.06.08 |
System of Linear Equations (0) | 2024.06.07 |
Homogenous system "Ax = 0"
1) trivial solution : x = 0
-> Span {0}
2) nontrivial solution : equation has at least one free variable (=해가 무한대)
-> Ax = 0 은 항상 Span {v1, ..., vp} 로 표현될 수 있다.
Nonhomogenouse system "Ax = b"
- 정리 6
Ax = b is consistent and let p be a solution
Then the solution set of Ax = b is the set of all vectors of the form w = p + vh
where vh is any solution of the homogeneous equation Ax = 0
[증명]

'통계 > 선형대수 (Linear Algebra)' 카테고리의 다른 글
Linear Independence (0) | 2024.06.09 |
---|---|
Vector equations & Scalar (0) | 2024.06.08 |
Solution of linear system : general solution with free variables (0) | 2024.06.08 |
Echelon Forms (0) | 2024.06.08 |
System of Linear Equations (0) | 2024.06.07 |